Copied to
clipboard

G = C524SD16order 400 = 24·52

3rd semidirect product of C52 and SD16 acting via SD16/C4=C22

metabelian, supersoluble, monomial

Aliases: C524SD16, Dic101D5, C10.14D20, C20.13D10, C4.3D52, C52C83D5, C51(Q8⋊D5), C52(C40⋊C2), (C5×C10).10D4, (C5×Dic10)⋊2C2, C20⋊D5.2C2, C10.3(C5⋊D4), (C5×C20).5C22, C2.6(C5⋊D20), (C5×C52C8)⋊3C2, SmallGroup(400,68)

Series: Derived Chief Lower central Upper central

C1C5×C20 — C524SD16
C1C5C52C5×C10C5×C20C5×Dic10 — C524SD16
C52C5×C10C5×C20 — C524SD16
C1C2C4

Generators and relations for C524SD16
 G = < a,b,c,d | a5=b5=c8=d2=1, ab=ba, cac-1=dad=a-1, bc=cb, dbd=b-1, dcd=c3 >

Subgroups: 500 in 56 conjugacy classes, 18 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C5, C5, C8, D4, Q8, D5, C10, C10, SD16, Dic5, C20, C20, D10, C52, C52C8, C40, Dic10, D20, C5×Q8, C5⋊D5, C5×C10, C40⋊C2, Q8⋊D5, C5×Dic5, C5×C20, C2×C5⋊D5, C5×C52C8, C5×Dic10, C20⋊D5, C524SD16
Quotients: C1, C2, C22, D4, D5, SD16, D10, D20, C5⋊D4, C40⋊C2, Q8⋊D5, D52, C5⋊D20, C524SD16

Smallest permutation representation of C524SD16
On 40 points
Generators in S40
(1 37 20 14 31)(2 32 15 21 38)(3 39 22 16 25)(4 26 9 23 40)(5 33 24 10 27)(6 28 11 17 34)(7 35 18 12 29)(8 30 13 19 36)
(1 31 14 20 37)(2 32 15 21 38)(3 25 16 22 39)(4 26 9 23 40)(5 27 10 24 33)(6 28 11 17 34)(7 29 12 18 35)(8 30 13 19 36)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)
(1 3)(2 6)(5 7)(9 23)(10 18)(11 21)(12 24)(13 19)(14 22)(15 17)(16 20)(25 37)(26 40)(27 35)(28 38)(29 33)(30 36)(31 39)(32 34)

G:=sub<Sym(40)| (1,37,20,14,31)(2,32,15,21,38)(3,39,22,16,25)(4,26,9,23,40)(5,33,24,10,27)(6,28,11,17,34)(7,35,18,12,29)(8,30,13,19,36), (1,31,14,20,37)(2,32,15,21,38)(3,25,16,22,39)(4,26,9,23,40)(5,27,10,24,33)(6,28,11,17,34)(7,29,12,18,35)(8,30,13,19,36), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (1,3)(2,6)(5,7)(9,23)(10,18)(11,21)(12,24)(13,19)(14,22)(15,17)(16,20)(25,37)(26,40)(27,35)(28,38)(29,33)(30,36)(31,39)(32,34)>;

G:=Group( (1,37,20,14,31)(2,32,15,21,38)(3,39,22,16,25)(4,26,9,23,40)(5,33,24,10,27)(6,28,11,17,34)(7,35,18,12,29)(8,30,13,19,36), (1,31,14,20,37)(2,32,15,21,38)(3,25,16,22,39)(4,26,9,23,40)(5,27,10,24,33)(6,28,11,17,34)(7,29,12,18,35)(8,30,13,19,36), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (1,3)(2,6)(5,7)(9,23)(10,18)(11,21)(12,24)(13,19)(14,22)(15,17)(16,20)(25,37)(26,40)(27,35)(28,38)(29,33)(30,36)(31,39)(32,34) );

G=PermutationGroup([[(1,37,20,14,31),(2,32,15,21,38),(3,39,22,16,25),(4,26,9,23,40),(5,33,24,10,27),(6,28,11,17,34),(7,35,18,12,29),(8,30,13,19,36)], [(1,31,14,20,37),(2,32,15,21,38),(3,25,16,22,39),(4,26,9,23,40),(5,27,10,24,33),(6,28,11,17,34),(7,29,12,18,35),(8,30,13,19,36)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)], [(1,3),(2,6),(5,7),(9,23),(10,18),(11,21),(12,24),(13,19),(14,22),(15,17),(16,20),(25,37),(26,40),(27,35),(28,38),(29,33),(30,36),(31,39),(32,34)]])

49 conjugacy classes

class 1 2A2B4A4B5A5B5C5D5E5F5G5H8A8B10A10B10C10D10E10F10G10H20A20B20C20D20E···20N20O20P20Q20R40A···40H
order12244555555558810101010101010102020202020···202020202040···40
size111002202222444410102222444422224···42020202010···10

49 irreducible representations

dim1111222222224444
type+++++++++++++
imageC1C2C2C2D4D5D5SD16D10D20C5⋊D4C40⋊C2Q8⋊D5D52C5⋊D20C524SD16
kernelC524SD16C5×C52C8C5×Dic10C20⋊D5C5×C10C52C8Dic10C52C20C10C10C5C5C4C2C1
# reps1111122244482448

Matrix representation of C524SD16 in GL4(𝔽41) generated by

04000
13400
0010
0001
,
1000
0100
00040
00134
,
04000
40000
001412
002916
,
0100
1000
003211
00309
G:=sub<GL(4,GF(41))| [0,1,0,0,40,34,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,40,34],[0,40,0,0,40,0,0,0,0,0,14,29,0,0,12,16],[0,1,0,0,1,0,0,0,0,0,32,30,0,0,11,9] >;

C524SD16 in GAP, Magma, Sage, TeX

C_5^2\rtimes_4{\rm SD}_{16}
% in TeX

G:=Group("C5^2:4SD16");
// GroupNames label

G:=SmallGroup(400,68);
// by ID

G=gap.SmallGroup(400,68);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,48,73,31,218,50,970,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^8=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1,b*c=c*b,d*b*d=b^-1,d*c*d=c^3>;
// generators/relations

׿
×
𝔽